Bonding, Lewis Structures

"There are therefore Agents in Nature able to make the Particles of Bodies stick together by very strong Attractions. And it is the Business of Experimental Philosophy to find them out."

Isaac Newton, 1717
"Two atoms may conform to the rule of eight, or the octet rule, not only by the transfer of electrons from one atom to another, but also by sharing one or more pairs of electrons. These electrons which are held in common by two atoms may be considered to belong to the outer shells of both atoms."

Gilbert Newton Lewis, 1916
"We shall say that there is a chemical bond between two atoms or groups of atoms in case that the forces acting between them are such as to lead to the formation of an aggregate with sufficient stability to make it convenient for the chemist to consider it as an independent molecular species."

Linus Carl Pauling, 1939
(Nobel Prize in Chemistry in 1954 "for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances" and Nobel Peace Prize in 1962.)

grade estimate on Monday

13.9-13.10 - Lewis Structures

13.11 - Resonance

13.12 - Exceptions to Octet Rule
13.13 - VSEPR

OMIT Ch 13.5-13.8 in Zumdahl no s, p, d, f electron configuration

OMIT hyperconjugation

Classical Description of Bonding

1) ionic bond - e^{-}transferred

Coulomb's Law

(for force or energy):

$$
F=k \frac{Q_{1} Q_{2}}{r^{2}} \text { or } V=k \frac{Q_{1} Q_{2}}{r}
$$

Ions such as Li^{+}and F - are held together by a coulombic force of attraction. Here a lithium ion is attracted to a fluoride ion, and the distance between the nuclei of the two ions is d.
$Q_{1} Q_{2}<0=>$ attractive $Q_{1} Q_{2}>0=>$ repulsive

As ion charge increases, force of attraction increases

As distance increases, force of attraction decreases

Classical Description of Bonding

2) covalent bond -e^{-}shared

Classical Description of Bonding

3) polar covalent bond - partial transfer

Periodic Trends: Ionization Energy

FIG I - First Ionization Energies (IE) of the Elements:

$$
X(g) \rightarrow X^{+}(g)+e^{-}
$$

shell structure
noble gas
configuration
good metals

Periodic Trends: Size

Periodic Trends: Electron Affinity

FIG III - Electron Affinities (EA) of the Elements

$$
X(g)+e \rightarrow X \cdot(g)
$$

noble gases have positive EAs
shell, subshell structure noble gas configuration

Periodic Trends: Electronegativity

FIG IV - Electronegativities (EN) of the Elements

1A	2A			Metals have low values					Metalloids have intermediate values			Increasing electronegativity				
								2.2				3A	4A	5A	6A	7A
$\begin{gathered} \mathrm{Li} \\ 1.0 \end{gathered}$	$\begin{gathered} \mathrm{Be} \\ 1.6 \end{gathered}$											$\begin{gathered} \text { B } \\ 2.0 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 2.5 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 3.0 \end{gathered}$	$\begin{gathered} 0 \\ 3.5 \end{gathered}$	$\begin{gathered} \text { F } \\ 4.0 \end{gathered}$
$\begin{aligned} & \mathrm{Na} \\ & 0.9 \end{aligned}$	$\begin{aligned} & \mathrm{Mg} \\ & 1.3 \end{aligned}$	3B	4B	5B	6B	7B		8B		1B	2B	Al 1.6	$\begin{gathered} \mathrm{Si} \\ 1.9 \end{gathered}$	P 2.2	S 2.6	$\begin{gathered} \mathrm{Cl} \\ 3.2 \end{gathered}$
$\begin{gathered} \mathrm{K} \\ 0.8 \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ 1.0 \end{gathered}$	Sc 1.4	$\begin{gathered} \mathrm{Ti} \\ 1.5 \end{gathered}$	$\begin{gathered} V \\ 1.6 \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ 1.7 \end{gathered}$	$\begin{aligned} & M n \\ & 1.5 \end{aligned}$	Fe 1.8	Co 1.9	$\begin{gathered} \mathrm{Ni} \\ 1.9 \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ 1.9 \end{gathered}$	$\begin{aligned} & \mathrm{Zn} \\ & 1.6 \end{aligned}$	Ga 1.8	$\begin{aligned} & \mathrm{Ge} \\ & 2.0 \end{aligned}$	As 2.2	Se 2.6	$\begin{aligned} & \mathrm{Br} \\ & 3.0 \end{aligned}$
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.8	1.0	1.2	1.3	1.6	2.2	1.9	2.2	2.3	2.2	1.9	1.7	1.8	2.0	1.9	2.1	2.7
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At
0.8	0.9	1.1	1.3	1.5	2.4	1.9	2.2	2.2	2.3	2.5	2.0	1.6	2.3	2.0	2.0	2.2

Nonmetals have

 high values$<1.0$1.5-1.92.5-2.91.0-1.4 \square 2.0-2.4 \square 3.0-4.0 molecule to attract shared electrons to itself
combines IE and EA into one property

Seven SIMPLE BONDING CONCEPTS

1) Lewis structures - guidelines (13.10-13.12)

- determine total number of valence electrons from group numbers (GN); most atoms obey octet rule - exceptions to octet rule:
$2-\mathrm{H}, \mathrm{He}$
$4-\mathrm{Be}$
6 - B, Al
species with odd number of electrons
some species with an element beyond 2nd period
- draw structure with all bonding pairs and lone pairs using symmetry
- show all resonance structures (atoms do not move)
- determine formal charge (FC) on all atoms having any

FC = GN - number of lone pair electrons - $1 / 2$ number of bonding pair electrons

- valence shell expand (VSE) if atom is beyond 2nd period and 1) has a formal charge separation or 2) octet rule gives insufficient number of bonding electrons; VSE to minimize FC separation while maximizing number of resonance structures (VSE for Week 6)

1) Lewis Structures

1. NH_{3}

VAL $=5+3=8$ (/2 = 4 pairs $)$

4. N_{2}
$\mathrm{VAL}=2(5)=10(12=5$ pairs $)$
$: N \equiv N:$
2. $\mathrm{C}_{2} \mathrm{H}_{4}$

VAL $=2(4)+4=12$ ($12=6$ pairs)

5. NaOH

VAL $=1+6+1=8$ ($/ 2=4$ pairs $)$ $\mathrm{Na}-\mathrm{O}$
$N a^{+}-\ddot{O}-H$
3. $\mathrm{C}_{2} \mathrm{H}_{2}$
$\mathrm{VAL}=2(4)+2=10(12=5$ pairs $)$

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
$$

6. SO_{2}

1) Lewis Structures

1. NH_{3}

$$
\text { VAL }=5+3=8 \text { (/2 = } 4 \text { pairs })
$$

$$
\begin{gathered}
\mathrm{H} \\
\mathrm{H}-\mathrm{N} \\
\mathrm{~N}
\end{gathered}-\mathrm{H}
$$

2. $\mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{VAL}=2(4)+4=12$ ($/ 2=6$ pairs)

3. $\mathrm{C}_{2} \mathrm{H}_{2}$

VAL $=2(4)+2=10(12=5$ pairs $)$

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
$$

6. SO_{2}
7. NaOH
$\mathrm{VAL}=1+6+1=8(/ 2=4$ pairs $) \quad \mathrm{VAL}=2(6)+6=18$
$\mathrm{Na}-\underset{-H}{-}$
$N a^{+}-\ddot{O}-H$

To Always Obtain the Optimal Octet Structure

1. VAL (total number of valence electrons) $=$ sum of the valence electrons of each element (sum of the group numbers, GN) - charge (if an ion).
2. STAB (stable noble gas configuration) $=$ sum of the electrons in the noble gas configuration for each element (2 for $\mathrm{H}, 8$ for C and beyond). Since an atom achieves its greatest stability and lowest energy when it has a filled shell, the noble gas configuration, we assume that an atom in a molecule or ion will also be most stable when it has its noble gas complement of electrons around it - the ubiquitous "octet" rule.
3. BOND (total number of bonding electrons) $=\mathrm{STAB}-\mathrm{VAL}$ and BP (number of bond pairs) $=$ $B O N D / 2$. Since electrons are shared between atoms that are bonded together the "octet" around each atom over counts the actual number of electrons involved. The amount of over counting is the number of bonding electrons.
4. LONE (total number of lone pair electrons) = VAL - BOND and LP (number of lone pairs) $=$ LONE/2. Valence electrons are of two varieties: they are either bonding electrons (BOND) or nonbonding, lone electrons (LONE).
5. Draw the Lewis structure using your calculated BP and LP. Remember that nature likes symmetry, put the odd atom in the center. The central atom will generally be the less electronegative (more electropositive) element.

1) Lewis Structures

```
1. }\mp@subsup{\textrm{NH}}{3}{
VAL = 5 + 3 = 8 (/2 = 4 pairs)
    H
```

2. $\mathrm{C}_{2} \mathrm{H}_{4}$

VAL $=2(4)+4=12$ ($/ 2=6$ pairs)

3. $\mathrm{C}_{2} \mathrm{H}_{2}$

VAL $=2(4)+2=10(12=5$ pairs $)$

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
$$

6. SO_{2}
7. NaOH

VAL $=1+6+1=8$ ($/ 2=4$ pairs $)$

$N a^{+}-\ddot{O}-H$

$$
\text { VAL }=2(6)+6=18
$$

$$
\text { STAB }=3(8)=24
$$

$$
\mathrm{BOND}=24-18=6(/ 2=3 \mathrm{bp})
$$

$$
\text { LONE }=18-6=12(/ 2=6 \mathrm{lp})
$$

2) Resonance, 3) Formal Charge

resonance - all resonance structures have same number of bonds and lone pairs
formal charge - usually more electronegative element has negative charge; consider CO

2) Resonance, 3) Formal Charge

resonance - all resonance structures have same number of bonds and lone pairs
formal charge - usually more electronegative element has negative charge; consider CO

$$
\begin{aligned}
& \mathrm{FC}(\mathrm{C})=4-2-1 / 2(6)=-1 \\
& \mathrm{FC}(\mathrm{O})=6-2-1 / 2(6)=+1
\end{aligned}
$$

Classical Description of Bonding

Chemical bond - forces that hold a group of atoms together causing them to function as a unit and lowering the energy of the system

Experimental evidence:
ionization energy - minimum energy to remove an electron in the gas phase
electron affinity - energy change when an electron is added to a gaseous atom

VSEPR Theory

"... the size of the valency group ... assume that the electron pairs occupy much the same positions whether they are shared or not ... determines, the type of spatial arrangement adopted ... With a quartet of electron, the molecule is linear (as in $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$). With a sextet, the arrangement is planar, and the valency angles 120°, giving with a covalency of 3 the plane symmetrical molecule (as in BF_{3}) and where it is 2 -covalent, as in SnCl_{2} a triangular mole-cule. With an octet there appear[s] ... the tetrahedron ..., the 2-covalent being triangular and the covalent pyramidal ... The decet when fully shared (5-covalent) gives the trigonal [bi]pyramid ... The 2-covalent decet is ... linear, as if derived from the trigonal bipyramid by removing all three equatorial groups. The duodecet when fully shared (6-covalent) is octahedral ... The 4-covalent form is ... square, and so to be derived from the octahedron by removing two trans groups."

Nevil V. Sidgwick and Herbert M. Powell, 1940
"The stereochemistry of an atom in any particular molecule depends on the number of pairs of electrons in its valency shell ... The general arrangement of the valencies around any atom is determined by the fact that the lone pairs ... arrange themselves as far apart as possible ... A more detailed and exact description of the shapes of molecules can be given if it is assumed ... that a lone pair repels other electron pairs more than a bonding pair of electrons ..."

Ronald J. Gillespie and Ronald S. Nyholm, 1957 "We were concerned about how to best give students some understanding of the shapes of inorganic molecules ... We found that we could explain the shapes of essentially all molecules of the type $A X$ on the basis that the electron pairs in the valence shell of a central atom keep as far apart as possible. Moreover, by making allowances for the differences between bonding and nonbonding electron pairs, we could account for small deviations from the basic idealized shapes ..."

Ronald J. Gillespie, 1984

4) Valence Shell Electron Pair Repulsion (VSEPR) Theory electrons repel one another

4) Valence Shell Electron Pair Repulsion (VSEPR) Theory

repulsions: BP/BP < BP/LP < LP/LP

steric number (number of electron pairs) => electronic geometry molecular geometry (shape) => bond angles, distortions
electronegativity => bond polarity
molecular polarity => dipole moment

Electrons Repel One Another

5: Trigonal bipyramidal

6: Octahedral

Electronic Geometry: Linear (SN=2)

Electronic Geometry: Trigonal Planar (SN=3)

Molecular Geometry: Bent (Angular)

Electronic Geometry: Tetrahedral (SN=4)

MOLECULAR GEOMETRIES FOR FOUR ELECTRON PAIRS
Electron-pair geometry = tetrahedral

Methane, CH_{4} 4 bond pairs no lone pairs

Ammonia, NH_{3} 3 bond pairs 1 lone pair

Water, $\mathrm{H}_{2} \mathrm{O}$
2 bond pairs
2 lone pairs

Electronic Geometry: Tetrahedral

Molecular Geometry: Trigonal Pyramidal

Lewis structure

electron-pair geometry, tetrahedral

molecular geometry

molecular geometry, trigonal pyramidal

Electronic Geometry: Tetrahedral

Molecular Geometry: Bent (Angular)

Electronic Geometry: Trigonal Bipyramidal (SN=5) 5) valence shell expansion (VSE)

FIVE ELECTRON PAIRS
Electron-pair geometry = trigonal bipyramidal

Trigonal Bipyramidal: Where are LP Electrons?

(a) PF_{5}

Trigonal bipyramid

(b) $\mathbf{S F}_{4}$

Seesaw
low-energy, favored)
$390^{\circ} \mathrm{LP} / \mathrm{BP}$
1180° LP/BP

(c) SF_{4}

Distorted pyramid (high-energy, not favored)

(d) CIF_{3}

Distorted T

(e) XeF_{2}

